Question Number	Answer	Mark
$\mathbf{1 (a) (i)}$	D;	(1)

Question Number	Answer	Mark
$\mathbf{1}(\mathbf{a) (i i)}$	C;	(1)

Question Number	Answer	Mark
$\mathbf{1}(\mathbf{a})($ iii $)$	A;	$\mathbf{(1)}$

Question Number	Answer	Mark
$\mathbf{1 (b)}$	1. a increase in temperature increases the permeability / eq ;	
2.i a of change in $\{$ colour / permeability $\}$ related to $\left\{422^{\circ} \mathrm{C} / 64^{\circ} \mathrm{C}\right\}$ OR no change up to $42^{\circ} \mathrm{C}$;	(2)	

Question Number	Answer	Mark
1(c)(i)	Any two from: 1. ference to pre-treatment e.g. rinsing method ; 2. \{size / mass / surface area / volume / shape\} of beetroot ; 3. b troot storage conditions / eq ; 4. $\{$ sa / type / species / eq\} beetroot ; 5. \{age of beetroot / storage time\} ; 6. (cubation) time / eq ; 7. $\{$ vol e / concentration / eq\} of \{water / solution\}(added to beetroot) ; 8. pH	(2)

Question Number	Answer	Mark
$\mathbf{1 (c) (i i)}$	1. ference to repeats / replicates / eq ; 2. i a that (colorimeter / readings) are accurate / provide numbers / more precise / measured not judged / eq\} ;	(2)

Question Number	Answer	Mark
$\mathbf{1 (c) (i i i)}$	1. (p k colour due to) \{pigment / dye /betalain / eq\} ; 2. idea that this is released when \{cells / vacuoles/ membranes\} are damaged ;	
	3. and ad not been washed off / eq ; ACCEPT converse argument when clear	(2)

Question Number	Answer	Mark
$\mathbf{1 (c) (i v)}$	idea that the second experiment shows that the permeability increases between $\{5 / 22\}{ }^{\circ} \mathrm{C}$ and 42 ${ }^{\circ} \mathrm{C} /$ in first experiment $5{ }^{\circ} \mathrm{C}$ has an effect $/ \mathrm{eq}$	
OR idea that the second experiment's results are quantified ;	(1)	

Question Number	Answer	Mark
2(a)	1. protein glycoprotein ; 2. facilita d diffusion ; 3. active transport / e ; 4. ATP / enosine triphosphate ;	

Question Number	Answer	Mark
2(b)(i)	1.77 0 $/ 7$; 2. correct division y 77 (multiplied by 100) to give correct answer, e.g. $9.1 / 9.09 / 9.0 / 9$ [CE applies] Correct answer $=2$ marks	(2)

Question Number	Answer	Mark
2(b)(ii)	1. idea that not all of the \{juice / sugar\} washed off / idea that the strawberries were not dried after rinsing properly / idea that some water reabsorbed (during washing) ; 2. loss of mass of strawberries not as high as it should have been / eq ; 3. (\%) value too small / eq ; OR 1. idea that strawberry \{tissue / juice $\}$ lost because \{washing too vigorous/ tissue stuck to towel when drying / squeezing strawberries / juice absorbed from strawberries\}/ water lost through evaporation / eq; 2. Ioss of mass of strawberries higher than it should have been / eq ; 3. (\%) value too high / eq ;	(3)

Question Number	Answer	Mark
2(b)(iii)	1.correct reference to water gradient (between sugar and strawberries) ; 2.reference to osmosis (of water from inside of strawberry to outside) ; 3. idea that water is found in \{cytoplasm / vacuoles\} (of strawberry) ; 4. reference to water as a solvent (for the sugar) ;	

Question Number	Answer	Mark
*3(a)QW	(QWC - Spelling of technical terms (shown in italics) must be correct and the answer must be organised in a logical sequence) 1. appropriate tissue named e.g. beetroot ; 2. reference to $\{$ washing / soaking\} \{beetroot / eq\} (thoroughly) ; 3. reference to waterbath (to maintain / change temperature) ; 4. reference to \{range / at least 5] \{temperatures / alcohol concentrations\} ; 5. appropriate controlled variable named e.g. length of time, size of beetroot ; 6. indication of what is being used to judge permeability colour of solution, absorbance, transmission ; 7. description of how permeability can be assessed e.g. use of colorimeter, standard solutions ; 8. reference to repeats / replicates ;	max (5)

Question Number	Answer	Mark
3(b)(i)	no \{relationship / correlation\} eq ;	$\mathbf{(1)}$

Question Number	Answer	Mark
3(b)(ii)	permeability of cell membrane increases as the solubility (in oil relative to water) increases / eq ;	(1)

Question Number	Answer	Mark
3(b)(iii)	1. circle drawn in top left quarter of graph ;	
2.\{circle/ dot than smallest printed circle, e.g. fits within one square ;	(2)	

Question Number	Answer	Mark
3(b)(iv)	1. reference to phospholipid bilayer ; 2. reference to hydrophobic nature (of bilayer / tails) ; 3. idea that \{non-polar molecules / molecules that have high solubility in oil compared with water\} will pass through the membrane more readily OR idea that \{polar molecules / molecules with low solubility in oil relative to water\} will pass through less readily ; 4. idea that permeability linked to readiness to dissolve ; 5. reference to \{fluidity / movement\} of phospholipids ;	max (3)

Question Number	Answer	Mark
4(a)(i)	1. phospholipids ; 2. phosphate (head) ; 3. (two) fatty acid (tails) ;	
	4. reference to location of glycerol ; 5. correct reference to ester bonds ;	max (3)

Question Number	Answer	Mark
4(a)(ii)	1. reference to \{hydrophilic / polar / charged\} part ; 2. reference to \{hydrophobic / non polar / uncharged\} part ; 3. reference to orientation of molecule in relation to water; 4. idea that aqueous environment is \{on two sides / cytoplasm and \{environment / tissue fluid / eq\}\};	max (3)

Question Number	Answer	Mark
4(b)	Active transport: 1. idea that molecule \{binds / fits into\} \{protein / carriers ; 2. idea that \{protein / carrier\} changes shape ; 3. (molecules move) against a concentration gradient / eq ; 4. reference to use of \{ATP / energy \} [Submax 2 marks] Facilitated diffusion: 5. reference to proteins as \{channels / gates / pores / carriers\}; 6. idea that \{channels can open or close / carriers change shape\}; 7. for \{large / polar / charged \} molecules (to pass through membrane) ; 8. (molecules move) down a concentration gradient / eq ; [Submax 2 marks]	max (3)

Question Number	Answer	Mark
4(c)(i)	1. idea that both types of protein in fused cell in correct context ;	2. idea that the proteins are \{intermingled / mixed / eq\};
3. same original number of protein / eq ;	max $\mathbf{(2)}$	

Question Number	Answer	Mark
4(c)(ii)	1.idea that \{phospholipids / molecule A\} allow ffluidity / movement/ eq\}; 2. idea that \{fluidity / movement / eq\} allow membranes to fuse; 3. idea that \{fluidity / movement / eq\} allows protein to \{move / intermingle / eq\}; max (2)	

